
ISRAEL JOURNAL OF MATHEMATICS 141 (2004), 185-210 

AFFINE PROPERTIES AND 
INJECTIVITY OF QUASI-ISOMETRIES 

BY 

I. A. VESTFRID 

Department of Mathematics, Technion Israel Institute of Technology 
32000 Haifa, Israel 

e-maih vestig@tx.technion.ac.il 

ABSTRACT 

We approximate E-quasi-isometries between finite-dimensional Banach 

spaces by linear near-isometries. In this way we improve and extend a 

theorem of John. We also improve results of Gevirtz on injectivity crite- 

ria for quasi-isometries. Our approach is to show that e-quasi-isometries 

almost satisfy the Jensen functional equation and to use then known facts 

about linear approximation of approximate solutions of Jensen's equation. 

1. In troduct ion  

The classical Mazur-Ulam theorem [MU] asserts that  a surjective isometry be- 

tween real normed spaces is affine. Moreover, John [J3] showed that  any local 

isometry which maps an open connected subset of a real normed space X onto 

an open subset of another real normed space Y is the restriction of an affine 

isometry of X onto Y. The proofs are based on showing that  such maps satisfy 

the Jensen functional equation 2f(~2-~) - f ( x )  - f ( y )  = 0 (in John's theorem 

the equation is satisfied locally), and the continuity then implies that  they are 

actually affine. The example of the function t ~ (t, Itl) from R to l~  shows that  

the hypothesis that  the isometry is a local homeomorphism cannot be omitted. 

Note also that  these conclusions are not valid for complex normed spaces (just 

consider complex conjugation on C). 

In this article we study the approximation of quasi-isometries by affine maps 

as well as some of their other geometric properties. Throughout,  X and Y are 

real Banach spaces. 
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Definitions: Let e > 0. 

1) If f~ C X and f :  fl ~ Y, then at each point x of f~ one defines D + f ( x )  and 

D - f  (x) as the upper and lower limits, respectively, of [If(x) - f(y)[[/[[x - y[[ as 

y tends to x. Following John [J2], a map of an open subset f~ of X into Y is said 

to be (m, M)-quas l - l somet r i c  if it satisfies the following two conditions: 

(1) f is a local homeomorphism, i.e., every point x 6 fl has an open neigh- 

borhood V such that  f is a homeomorphism of V onto an open subset of 

Y; 

(2) 0 < m <_ D - f ( x )  and V + f ( x )  <_ M for every x 6 ~. 

f is called an e -quas i - i some t ry  if it is an (m, M)-quasi-isometry satisfying 

( l + e )  -1 <_ m _< M _< ( l + e ) ,  and simply a q u a s i - i s o m e t r y i f i t  is an e- 

quasi-isometry for some e >_ 0. 

2) A map f from a subset S of X into Y is called e-rigid if 

(1 ÷ e ) - l l ly -  xll _< IIf(y)-  f(x)[I <- (1 ÷ c)IlY- xll 

for all x, y • S. 

Note that  if dim X = dim Y < oc, then, by the invariance of domains, any e-ri- 

gid mapping of an open set is a local homeomorphism, hence e-quasi-isometric. 

(For geometric properties of e-rigid maps when dim X < dim Y, see IV1].) 

In 1961, John [J1] proved the following local stability theorem for the case 

when X and Y are the same Euclidean space. 

THEOREM 1.1: Let f~ be a convex domain in l~ which contains a ball B(z, r )  

and is contained in a concentric ball B(z ,  R). I f  f is an e-quasi-isometry in f~, 

then there is a linear isometry "y such that 

IIf(x) - f ( z )  - ~/(x - z)ll <_ kn3/2eR21r for every x • f~, 

where k is a universal constant. 

The following natural question is asked in [BL]: Does Theorem 1.1 hold with 

an estimate independent of the dimension? Matou~kova [M] has answered this 

question in the negative. She constructed a norm preserving e-quasi-isometry 

f of 12n onto itself (n is about exp 1) such that  the distance of f on the unit 

ball from any affine mapping of R 2n is at least I / v ~ .  On the other hand, the 

author has shown in 1999 that  the estimate in Theorem 1.1 can be replaced by 

kx/~eR2/r ,  where k is a universal constant. Recently this result also has been 

improved by Kalton [K] to k(log n + l ) e R 2 / r  (see also Corollary 3.6(iv) below), 
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and this, by the example of Matou~kova, is the best estimate for quasi-isomet- 

ries between Euclidean spaces. The situation is different for other spaces, and 

we show in Corollary 3.6(vi) that if l~ is replaced, for example, by 1 n or by l~ 

in Theorem 1.1, then there are universal constants k, s0 > 0 so that whenever 

0 < s < Co, then there is an affine isometry U such that 

Iif(x) - U(x)l I _< k~R2/r for every x E Ft. 

Thus in this case, the approximation error does not depend on the dimension. 

The main purpose of this work was to answer another question asked in [BL], 

namely: whether the Euclidean norm can be replaced in Theorem 1.1 by other 

norms? Since there are spaces with no non-trivial linear isometries, it does not 

make sense to look for an approximation by affine isometries, and the question 

is whether it is possible to approximate quasi-isometries satisfying f(0) = 0 by 

linear near-isometries, i.e., by linear invertable operators T such that IITII • II T-1 II 

is close to one. Here we use another stability, namely, the local stability of 

Jensen's equation. We show that quasi-isometries between Banach spaces belong 

to a class of approximate solutions of the Jensen functional equation which we call 

homogeneously approximately midlinear functions (see IV1] for a study of this 

class of mappings and, in particular, on their approximation by affine maps); we 

then use the results of [V1] on the approximation of such functions to generalize 

John's theorem by obtaining affine approximations for quasi-isometries between 

any two Banach spaces of the same finite dimension. 

Definition ([V]): Let X and Y be normed spaces, and let A be a convex sub- 

set of X. Let s _> 0. A function f: A-+ Y is said to be homogeneous ly  

s -approximate ly  midl inear  if 

< s l i x -  yiI 
\ 2 ]  2 

for all x, y E A. 

We shall abbreviate "approximately midlinear" by AML. 

The last section of the article deals with the problem on the injectivity of 

quasi-isometries. 

In Section 2 we prove the Main Lemma (Lemma 2.1), which is an improvement 

of [G2, Proposition 2] of Gevirtz. It follows, for example, from this lemma and 

from Lemma 2.5 that an ~-quasi-isometry of a ball B(z, r) is homogeneously 

Cs-AML on any proper concentric sub-ball B(z, p) with C depending only on 

the ratio r/p. The proof uses the technique of Lindenstrauss and Szankowski 

from [LS]. 
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Combining the Main Lemma with some results from [V1] enables us to obtain 

in Section 3 affine approximations of quasi-isometrics. Then applying known 

facts on Closeness of linear near-isometrics to isometrics we show that  e-quasi- 

isometrics (with a small ¢) of "nice" spaces are also close to affine isometrics. 

In Section 4 we use Lemma 2.1 to improve results of Gevirtz [G2] on the 

injeetivity of quasi-isometrics defined on open convex sets or on uniform domains. 

We use standard notation and terminology. As usual (x, y) and Ix, y] denote 

the open and closed straight line segments joining the points x and y. The 

r-neighborhood of a set A is denoted by B(A,r) ,  and we abbreviate B({z} ,r)  
by B(z,r) .  For short we also write B(0, r) = B(r) and B(1) = B (or BE when 

we need to specify the space). The closure, diameter and convex hull of a set A 

are denoted by ~i, diam A and co A, respectively. The cardinality of a set A is 

denoted by [A]. The Banach-Mazur distance between normed spaces X and Y 

is denoted by d(X, Y). If Banach space X has non-trivial type p, we denote by 

Tp(X) its p-type constant. 

2. The  M ain  Lemma 

The next lemma shows that  locally any quasi-isometry of an open set is homo- 

geneously AML. The assertion is a modification of the Proposition in [LS], and 

the proof is similar, but we need to be somewhat more careful because our map 

is not defined on the whole space. 

LEMMA 2.1 (Main Lemma): Let c > O, and let f: Bx(z , r )  -+ Y be e-quasi- 
isometric. Then f is homogeneously 6e-AML on the concentric ball [~(z, r/5). 

We state as two lemmas some basic facts due to Nevanlinna [N] and John [J3] 

(see also [BL, Chapter 14]), and we give them without proof. 

LEMMA 2.2: [N] Let A be a convex subset of X, and let f: A ~ Y satisfy 

D+ f(x) <_ M for all x C A. Then IIf(Y) - f ( x ) l l - <  M I I y -  xII for all x, y e A. 

LEMMA 2.3: [J3] Let B(z ,r)  C X ,  and let f: B(z ,r)  ~ Y be (m,M)-quasi- 
isometric. Then 

(i) t o n y -  x[[ < fir(y) - f(x)[[ < M i i Y -  x][ for a11 x ,y  E B ( z , rm /M) .  

(ii) B(f(z) ,  mr) C_ f (B(z ,  r)). 

Proof o fLemma 2.1: Fix any x,y  E B(z ,r /5) .  
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If s > 1/11, then by Lemma 2.2 

s<.+:(.)<, 
_ :(x> + ) 

_< (1 + c)Nx - YII/2 < 6~llx - yll. 

Suppose now that s _< 1/11. By translation and scaling, we can assume that 

y = - x ,  f (x )  = - f ( y )  and [Ix - y[[ = 2. Under this normalization we need to 

prove that [If(0)[ I < 12c. Note that under the normalization Hz[[ _< r/5 and 

r _> 5, hence B(4) C B(z ,r ) .  Since (1 + s)2(eS/n + (1 +¢)2)  < 4, it follows that 

B((1 + ¢)2(e s /u  + (1 + ~)2)) C B(z ,r) .  Hence by Lemma 2.3(i), f is s-rigid on 

B(e s /u  + (1 + ¢)2). In particular, f is a homeomorphism from B(e s /u  + (1 + ¢)2) 

onto its image. Denote its inverse on f (B(e  s /n  + (1 + ¢)2)) by f -1 .  

Choose n > 0 so that  2 -(n+l) < l l c  < 2 -n.  Then 

(1 + ¢) < (1 + c) 2" < (1 + E)1/(11e) < el/11. 

r ~2 "+3 in 12n+3+1 Define inductively two sequences lwih=o C X and ty ih=o C Y by wo = 0 

and 
Y2i = f(w2i), y2i+1 -- - f (w2i ) ,  

W2i+1 = f - 1  (Y2i+1), W2i+2 = __f -1  (Y2i+l). 

(That S~, ~ 2~+3-1 f (B (e  s /u  + (1 c)2)), i.e., that  f - l ( y i )  is actually well t~ i  Ji=0 C -I- 

defined, will follow from the inclusion (2.4) below.) 

Put  for k = 0 , . . . , 2  ~+2, 

f i + I j + 1 
5k 

Ak = m ~ x { I I ~  - xIt) .  
i < 2 k  

= the symmetry of {wi}i=0 Note that Ao = 1 and that Ak maxi<2k{[Iw~+x[[} by 2k 

with respect to the origin. Note also that  for i _< 2k, 

(2.1) 

The following two sublemmas describe the behavior of Ak and 5k. 

SUBLEMMA 1: With the notation as above we have, for i <_ 2 n+2, 

(2.2) 
(2.3) 

/xi _< (1 + ~)2i, 

y2i+l E/7(f(o), (1 + ¢) 2i+1 + 1 + ¢). 
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Note that  by (2.3), Lemma 2.3(ii) and by the choice of n we have, for i < 
2 n+2 - -  1, 

(2.4) Y2i÷l E f(/9((1 + e) 2i+~ + (1 + ¢)2)) C f ( B ( e  s/11 + (1 + e)2)). 

Thus, the sequence { f - l ,  ,~"+3-1 [Yi) h=o is well defined. 

Proof of Sublemma 1: We shall prove the sublemma by induction on i. Since 

f ( - x )  = - f ( x )  and by Lemma 2.2, 

I I ( - f ( 0 ) )  - / ( 0 ) 1 1  ___ IIf(x) - f(0)l l  + I I f ( - x )  - f(0)l l  ___ 2(1 + e). 

Thus (2.3) holds for i = 0; the other claim is trivial for i = 0. Assuming the 

sublemma is true for some i < 2 '~+2 - 1, we now prove it for i + 1. 

We start with (2.2). It follows from (2.4) for / that  

Y2~+1 • f ( B ( e  s/11 + (1 + 5)2)). 

Write Ai+l = [[wj-x[[ for some j _< 2i+2.  I f j  _< 2i, then Ai+I = Ai < (1 +e)  2i. 

If j = 2i + 1, then wj = f - l ( Y 2 i + a )  and f ( w j )  = - f (w2 i ) .  Thus 

IIf(wj)  - f (x) l l  = I I f ( w 2 i )  - f ( - x ) l l  

and, by the e-rigidity of f on B(e s/11 + (1 + e)2), 

Ilwj - xll ___ (1 + E)llf(wj) - f (x) l l  = (1 + e ) l l f ( w 2 3  - f ( - x ) l l  

_< (1 + e)~llw2~ + xll. 

If j = 2i + 2, then - w  y = f-l(Y2i+l ) and f ( - w j )  = - f (w2 i ) .  Thus 

I l f ( -wj )  - / ( - x ) l l  = IIf(w2i) - f(x)II 

and consequently, 

I l w j  - xll < (1 + e ) l l f ( - w j )  - f ( - x ) l l  = (1 + e)llf(w2~) - f (x) l l  

___ (1 + ~)~llw2i - xll. 

In both cases Ai+l < (1 + e)2A~, and (2.2) holds for i + 1. 

Finally, we prove (2.3) by (2.2) and Lemma 2.2: 

I l y 2 ~ ÷ 3  - f(0)l[  = [[f(w2i+2) + f(0)[[ _< I l l (x)  - f(w2i+2)ll  + I I f ( - x )  - f(0)[I 

< (1 + c)(llw~i+~ - xll + Ilxll) ___ (1 + e)(Ai+l + 1) 

< (1 + ~)2i+3 + 1 + c. | 
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SUBLEMMA 2: W i t h  t h e  n o t a t i o n  as a b o v e  

(2.5) 52,,+1 >_ 2(1 - 2m¢)52,,, for m = 1 , . . . , n  + 1. 

Proof." Fix integers i > j _> 1 such that 

i + l  j + l  _ 2 n + 2  

We shall show that there are nonnegative integers p, q so that 

p + l  i + 1  q + l  j + l  [ - r - ]  < [ - c ]  + 1, 

(hence, in particular, 5[ 2~_+~]+[ +~_~_ 1 _< 5[~@]+[ +z~_l) and 

(2.6) Ilwj - w~ll _ Ilwq - wpll + 2e5[~@1+[ ~+z~_~_]. 

We then deduce the sublemma as follows: Fix m _< n + 1 and choose i >_ j _> 0 

such that 
i + 1  j + l  2m 

[ T ]  + [ ~ - - ]  _< and 52 . . . . .  H w j - w i [ [ .  

Let s be the number of times we may apply (2.6) (that is, until q > 0). Then 
s < [ +/2A1 and we find Wp with [ p+ll < 2 m - ,  ~ ] 2 J -  so that 

2 [ j  + 1]c5 m _ 52.,  = I lwj  - w~ll _< IIw~ll + [ - - ~ j  2 < 5 ~ , ° + , / 2  + 2"~e52m 

where the last inequality follows from (2.1). (Note that w0 = 0 and that j _< i 
implies 2 [ @ ]  _< 2m.) 

To prove (2.6) note that we can write Ilwj - w d l  as I I f - l (yk)  -w~ll with an odd 

k _< j and [t@] = [i@]. Indeed, i f j  is odd, then Ilwj - w d l  = I I f - l (y j )  - w d l .  If 

j is even, then Ilwj -w~ll  = ] l f - l (y j -1 )  - ( -wi) l l .  Now similarly (with an odd k), 

if I is even, t h e n  IIf(w~) - Ykll  = [ l ( - f ( w t ) )  - Y k - l l l  = [lYl+l - f (wk-~) l l ,  and if l 

is odd,  then  IIf(w~) - ykll = Ilyl-~ - f (wk-1) l l .  Hence,  we can wri te  I lf(wl)  - Ykll 

as Ilyp - f ( w q ) l l  with an even q < j (thus [ @ ]  _< [ @ ]  - 1), [ p+I12 J -  < [i@] + 1 and 

[ +P__~I = [/@] + 1 only if p is odd. Hence p < 2 ~+3, and we have Wp = f - ~  ( y ; ) .  2 l 
Then by the e-rigidity of f on B(e s / u  + (1 + e)2), we have 

][wj - will  - [[Wp - Wq[[ =llf-l(yk) - will - IlYk - f(wz)[[ 

+ Ilyp - f ( W q ) [ I -  [ [ f - l ( y p )  _ wqlt 

_<e(llf-X(yk) - w~ll + [ ] f - l ( y p )  _ wq][ )  

_<2e@ 2_~]+[ +z~_ l . I I  



192 I.A. VESTFRID Isr. J. Math. 

We return to the proof of Lemma 2.1. We first show by induction that 

11 k 8/11 1) (2.7) < (e + 

for each integer 0 < k < n + 2. 
By the definitions of 5m and Ai and by (2.2), it follows that for all m _< 2 n+2 

5 m S  max ( A i + A j )  S(1+¢) 2 m + l .  
i+j=m 

Taking rn = 2 n+2, the choice o f n  gives that  52.+2 < e s/11 + 1, i.e., (2.7) holds for 

k = 0. Assume it holds for some k > 0. The choice of n gives 2(1 - 2n-k+l¢) _> 

2(1 - 2/11) = 18/11. Hence by (2.5) and the induction hypothesis, 

52._k+1 _< 52,~-~+2/(2(1 - 2n-k+le)) < (11/18)k+l(e s/11 + 1), 

which completes the proof of (2.7). 

Note also that repeated use of (2.5) gives 

(2.8) (~2~+2 > 2n+1(52 -- 2C((~2~+1 + ' "  -t- 52)). 

Finally we obtain by (2.1), (2.8) and e _< 1/11, 

1 ½ l + e  
IIf(o)ll = IIf(o) - f ( f - l ( - f ( o ) ) ) l l  = IIf(o) - f(wl)ll  < --T-Itwll l  

1+c, 
S - - - ~  2 < 62 < (2-(n+1)(~2-+2 + 2e(62-+1 + " "  + 52)) < 12e, 

because the first term in the parentheses is bounded by 11(eS/11+ 1)e (by (2.7) and 

the choice of n) and the second term is bounded by 2 ~ = 1  (11/18)k( es/11 + 1)e 

(by (2.7)). II 

Remark 2.4: (i) An inspection of the proof above gives also the following: 

If f: B x ( ( x  + y)/2, 21Ix - YlI) -----+ Y is e-quasi-isoraetric, then 

/ T, --1- ~t \ f(x) + f (y)  

(ii) The dependence on e in the estimate of the Main Lemma is linear. The 

next simple example shows that this is the correct dependence. 

Consider the real function f given by 

(1 + e)t, t _> 0, 
f ( t)  = t / ( l  + e), t <_ O. 
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Clearly, f is v-quasi-isometric. On the other hand, for every v > 0, t > 0 

f(O) f(t) -b2f(-t)  [ _ ~_~ ~ -¢¢ t . 2  ÷ s 

(iii) Gevirtz [G2] was the first to establish that  an s-quasi-isometry of a ball 

B(z, r) is homogeneously k(¢)-AML on some concentric sub-ball B(z, p). It fol- 

lows from his result that  if p < r/3, then k(¢) ~ 0 as ¢ "~ 0. He used different 

arguments and gave the estimate k(v) = Cv °'1216"'" where the constant C depends 

only on the ratio riP. 

By scaling, Lemma 2.1 gives the approximate midlinearity on /~x of an v- 

quasi-isometry defined on Bx  (1 + 5) for 5 _> 4. The next statement extends this 

result for all 5 > 0. 

LEMMA 2.5: Let 0 < 5 <_ 4, and let f: Bx(1 + 5) --+ Y be e-quasi-isometric. 
Then f is homogeneously 48v/5-AML on Bx .  

Proof: Fix any x, y E Bx .  

If 5 >_ 21[x - y[[, then B(~2+-~,2[[x - y[[) C B(1 + 5) and Remark 2.4(i) applies. 

(Recall that  5 _< 4.) 

Suppose that  5 < 2[[x - YI[. We shall use the following easily checked identity 

(shown to me by Y. Benyamini): 

Let g {Vi)i=_ N be points in a linear space. Then 

V-N ~- VN 
(2.9) V 0 2 -- Z (N -]i[)(vi vi-1 -[-viw12 )" 

[i[<N--1 

W N Put  N = [21Ix - y l l /5 ]  + 1, and consider the partition { ili=-N of the segment 

Ix, y] with w~ -- x+y2 + 2~N ~i" It follows from the choice of N that for every 

- N  + 1 < i < N - 1, [[wi+l - wi-l[I < 512. Hence, B(wi, 2[[w/+1 - Wi-l[I) C 

B(1 + 5) and by Remark 2.4(i), 

(2.10) f(wi) -- f(wi-1) + f(Wi+l)l' < 6vllWi+l -- wi-lll  = 6a,,Xll ylt 
2 , - N 
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Thus we have 

f (x )  + y(y) f ( W - N ) +  f(WN) 
f(Wo) 

< ~ ( N -  Iil)llf(w~) - f(wi-1) + f(wi+X)ll 
- 2 

IiI_<N-1 

< 6~llx- yll ~ (N - 1il) _ 6el lx-  YIIN 
- N 

IiI_<N-1 

< 6~[]x - y[[(2 [ I - ~ - -  + 1) < 24c [Ix 
yl] 2 

- _ _  6 

< ~ c I I x  - ~11, 
O 

where the first inequality follows from (2.9), the second follows from (2.10), the 

third from the choice of N, the fourth from the assumption on 8, and the last 

from Ilx - yll ___ 2. . 

Remark 2.6: (i) Note that  by the same proof, we have: 

Let A C X be convex with diam A _< 2. Let 0 < 6 <_ 4, and let f: B(A, 8) --+ Y 

be e-quasi-isometric. Then f is homogeneously 48¢/6-AML on A. 

(ii) MatouSkova [M] gave a direct proof of Lemma 2.5 when X and Y are 

Hilbert spaces. She used geometric properties of the Euclidean norm. 

PROBLEM: We do not know whether (for 5 = O) an e-quasi-isometric map 

f: B x  -+ Y is necessarily homogeneously k(e)-AML on B x  with k(c) "N 0 as 

~'NO. 
This would follow, for example, from an affirmative answer to the question: 

Do there exist a constant 6 > 0 (independent of e) and a posi- 

tive function 7(e) such that 7(e) "N 0 as ~ ~ 0 and every e-quasi- 

isometry f: B x  --+ Y can be extended as a 7(e)-quasMsometry to 

Bx(1  + 6)? 

Actually, a weaker statement would sumce, namely, an aFfrmative answer to the 

question: 

Given normed spaces X and Y, do there exist positive functions 

7(e) and ~(e) such that 7(e)/6(e) ~ 0 as e "N 0 and every c-quasi- 

isometry f: B x  ~ Y can be extended as a 7(e)-quasi-isometry to 

Bx(1  + 6(e))? 
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Note that when f:  B x  ~ Y is an s-quasi-isometry, then for all x, y E B x  

::, :(x>+ 
< cv, t, 2./ 2 

where c is an absolute constant. 

Indeed, by the Main Lemma f is homogeneously 6v-AML on any ball/~x (w, t) 

for which B(w, 5t) C Bx .  Let u, v E B x  (u ~ v) and denote E = span{u, v} 

and fE = f]BE" Then fE is homogeneously 6e-AML on Bx(w,  t) N E whenever 

B(w, 5t) C Bx .  By [V1, Proposition 3.2] applied to fE on BE(l/5) ,  there is a 

linear operator F: E --+ Y such that 

NfE(x) - f(O) - Fxll < Ce 

for some absolute constant C and for every x E/~E(1/5). Certainly, the map 

g = ] E -  f ( O ) -  F is homogeneously 6s-AML on any ball BE(w,t)  for which 

BE(w, 5t) C BE; and it is Lipschitzian on BE and bounded on/~E(1/5) by Cv. 

By scaling and by Lemma 3.1 below, we obtain an absolute constant K such that 

I[g(x)l[ ~ Kv for every x E BE. Hence 

+ :(v) ,(u)+,(v) 
-2 = g 2 - 

<2Ks .  | 

We finish the section by observing that Lemmas 2.1, 2.5 and [V1, Lemmas 2.5, 

2.7, 2.8] imply that in a sense an v-quasi-isometry of a ball is "nearly affine" on 

proper sub-balls. 

COROLLARY 2.7: Let f:  B x  --+ Y be G-quasi-isometric. Put, for 0 < p < 1, 

( 6 ,  0 < p < 1/5, ¢(p) =~, 48 1/5< <1. 1/p-1, P 

Then for each 0 < p < 1, f is homogeneously ~b(p)v-AML on B(p) and 
(i) 

Aixi - A~f(xi) <_ 2(log2(m- 1) + 2)~b(p)ps 
- -  i = 1  

• m m for every integer m >_ 2, {x,}i=l C JB(p) and Ai >_ 0 with ~i=1 A~ = 1. 
(ii) There is an absolute constant k such that if X has non-trivial type p, then 

k 
f (  E A~xi) - E AJ(x~) <_ p _  I (I + [log2(p-1)[ + log2Tp(X))¢(P)P¢ 

for every {x~} C ~(p)  and A, > 0 with E ~ = 1. 
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(iii) If X = Lp(#) for some 2 < p < co, then 

f ( E h i x i ) - E h i f ( x i )  < 12816¢(p)pc 

for every {xi} C/~(p) and hi >_ 0 with ~ hi = 1. 

(iv) Let 1 < p <_ co and M > O. Let a sequence {ui}icI C B x  satisfy 

j~cjOjUj <-- MIJ[ 1/p 

for every finite set J C_ I with [JI >- 2 and for every Oj E {-1,  1}. 
~--6({pui}ie ;). Then 

( E )  4M 
f hiXi -- E h i f ( x i )  < 2(p-1)/p -- I¢(P)P¢ 

for every {xi} C A and hi >_ 0 with ~ hi = 1. 

Isr. J. Math. 

Let A = 

3. Affine approximation of quasi-isometries 

The following technical lemma gives global bounds for a locally homogeneous 
AML function in terms of its bound on a fixed sub-ball. 

LEMMA 3.1: Let X and Y be normed spaces, and let ~ be a convex subset of X 

which contains the ball B(r)  with r > 1. Let g: f~ -~ Y be a continuous function 

which is homogeneously E-AML on any ball /~(w, t) for which B(w,  rt) C f~. 

Then 

(3.1) 

for all x 6 f~. 

Proof" 

IIg(x)ll ~< (sup tlg(y)ll + 4~llxll)(211xll + 1) yEB 

Putting A = tIxI[/(2I[xI[ + 1) for every x E ~, we shall show that 

/ x \ 

(3.2) (x - h)g~l lx l l  + ~ )  - by(O) - (1 - 2h)g(x)  < 4~llxll. 

This implies (3.1) because 1/(1 - 2A) = 2[Ixll + 1. 
We shall use the following fact (see IV1, Lemma 2.5]): 
If A is a convex set on which g is homogeneously ~-AML, then 

(3.3) IIg(#u + (1 - ~ )v)  - ~ g ( u )  - ( 1  - #)g(v) l l  < 2~llu - vii 
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for all u, v E A and 0 <_ p <_ 1. 

The proof of (3.2) will be done in two steps. 

Assume first that x E/~. By the assumptions g is homogeneously s-AML on/~, 

hence (3.3) gives 

( 1 -  A)g([ix[iX-+ 1 ) - A g ( O ) -  ( 1 -  2A)g(x) 

= ( I - A )  g(llxl]-+l) I - A  g(O) 

_ 2(1 - A)~llxll _ 2~llxll, 

In the second step assume that x E f~ \ /~ .  Put  q = Ilxll/(llxll + 1) and 

xj = (1 - q:)x for j = 0, 1, .. . .  Then 

[[xj - -  Xj÷I[ [ < [[Xj - -  xj-1][ = 11 - 1/qlqJllxl[ = qJ 

by the definition of q. Thus x j - l , X j ÷ l  E B ( x j , q J ) .  Since fl is convex and con- 

tains B(r)  and x, B(x j ,  rq j)  C f~. Then by the assumptions, g is homogeneously 

E-AML on [~(xj,qJ). Now observing that xj = Axj_l + (1 - A)x/+l we obtain 

by (3.3) 

[]g(xj) - Ag(xj_l)  - (1 - A)g(xj+l)[[ _< 2¢][xj_x - xj+l[[ < 4¢q j. 

Hence for every i _> 2, 

I1(1 - A)g(x l )  - Ag(O) + Ag(x~) - (1 - A)g(xi+l)ll 
i 

< ~ llg(xj) - Ag(xj_i)  - (1 - A)g(xj+x)ll <_ 4eq/(1 - q) = 4ellxll. 
j----1 

Letting i ) cx) completes the proof. | 

PROPOSITION 3.2: Let d i m X  = d imY = n and fl be a convex domain of X 

which contains a ball B(z ,  r) and is contained in a concentric ball B(z ,  R). Let 

f :  f~ -+ Y be an ¢-quasi-isometry. Then there is an absolute constant k such that 

(i) For every 1 < p < 2, there is a linear operator F: X -~ Y such that 

(3.4) [If(x) - f ( z ) -  F ( x -  z)[[ 
k 

< (1 + [ I n ( p -  1)1 + l n T p ( X ) ) m i n { d ( l ~ , X ) , d ( l ~ , Y ) } ~ R 2 / r  
- p - 1  

for every x E ~ and 

(3.5) [ IIFxll 1 < - ~ k  1(1 + I l n ( p -  1)I + l n T p ( X ) ) m i n { d ( l ' ~ , X ) , d ( l ~ , Y ) } s  
Ilxll - p -  
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for every x ~ O. 

Obviously, i f  

k 
- - ( 1  + [ l n ( p -  1)[ + In Tp(X))min{d(l~,  X ) , d ( l ~ , Y ) } e  < 1, 
p - 1  

then F is an onto isomorphism. 

(ii) If X :- l~ (2 <_ p <_ ce), then there is a linear operator F: lp ~ Y such 

that  

(3.6) I I f (x )  - f ( z )  - F (x  - z)ll _< k min{v/-~, d(l n ,  Y ) } c R 2 / r  

for every x E ~ and 

(3.7) IIFxll _ 1 < kmin{v / -n ,d ( In , y ) }¢  
X 

for every x # O. 

I f  k min{x/~, d(l n ,  Y)}~ < 1, then F is an onto isomorphism. 

(iii) I f  X = Lo~(#) and Y is isomorphic to l~(F)  for some set F (the spaces 

are not necessarily finite-dimensional), then we have 

(3.8) [[f(x) - y (z)  - F (x  - z)[ I <_ kd ( l~ ( r ) ,  Y )¢R2 / r  

for every x E 12 and 

(3.9) IIFxll 1 < k d ( l ~ ( F ) , Y ) e  
Ilxll - 

for every x ~ O. 
I f  kd( l~(F) ,  Y)c < 1, then F is an onto isomorphism. 

(iv) Let 1 < p < cc and M > O. Suppose that  X has a normalized basis {ei}n=l 
satisfying 

~ Ojej <_ MIJ[ Up 
3EJ 

for every set J C_ { 1 , . . . , n }  with [Jl >- 2 and for every 0j E { -1 ,1} .  Put  fl = 

m i n e  It~l=l [] ~ tiei][. Then there is a linear operator F: X --+ Y such that 

(3 .10)  [ I f (x )  - f(z) - F ( x  - z)[[ _ (pk--_M~)/3eR2/r 

for every x E f~ and 

(3.11) ]llFXtl l < k M  
-(p :y)z I 
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for every z # 0. 

If  ~ ¢  < 1, then F is an onto isomorphism. 

Proof: We only prove (iii). The proofs of the remaining assertions follow the 

same path using [V1, Propositions 3.2, 3.4, 3.9]. We omit the details. 

We shall use the next claim which follows from [V2, Proposition 1.3.6(iv)] and 

is, in fact, an immediate corollary of [BK, Theorem 3.9(c)]. 

There is an absolute constant K so that if Y is isomorphic to Ico(F) for some 
set F, 2 <_ p <_ co and f: J~L,,(tt) -+ Y iS a continuous homogeneously c-AML func- 
tion, then there is an afflne function h: Lp(#) --+ Y such that 

IIf(x) - h(x)H _< Kd(lco(C),Y)E 

for all x E BLv(~ ). 
We can assume that e < 1, because otherwise we put F = 0 and then 

Ill(x) - f(z)ll __ (1 + e)l[x - z[[ _< (1 + 1/e)eR <_ 2¢R2/r. 

Lemmas 2.30) and 2.1 imply that  f is e-rigid and that it is homogeneously 

6e-AML on/~(w,  t), provided B(w, 5t) C ft. By translation and scaling, we can 

assume that z = 0, f(0)  = 0 and r = 5. Thus B(z, r) = B(5). 

Since f is homogeneously 6¢-AML on /~, the claim above gives an absolute 

constant K and a linear operator F:  X -+ Y so that  

(3.12) [If(x) - Fxl[ < Kd(loo(r),  r ) c  

for every x E/~. This with the e-rigidity of f imply for every x with [[x[t = 1, 

[NFx[[-  1[ < I[[Fx[[- [[f(x)[[[ + [[]f(x)[[-  11 < K d ( l ~ ( F ) , Y ) e + e .  

Thus, F satisfies (3.9). 

Let x E ~. The function g = f -  F is homogeneously 6e-AML on/~(w, t ) ,  

whenever B(w, 5t) C ~, and Lipschitzian on ~. By Lemma 3.1 (with r = 5) and 

by (3.12), 

Ilg(x)ll < (Kd(lco(r), Y ) +  241lxll)(211x[I + 1)e _< kd(Ico(r), Y)R=c, 

which completes the proof, since scaling yields the 1/r factor in the right-hand 

side of (3.8). | 

By Lemma 2.3, given an e-quasi-isometry f :  Bx(z ,  r) -+ Y, its inverse map f - 1  

on B y ( f  (z), r/(1 + e) 3) is well-defined, and it is also e-quasi-isometric. So it can 

also be approximated by a linear operator (from Y to X)  as above. This simple 

observation enables us to improve Proposition 3.2(i) for small e's as follows. 
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COROLLARY 3.3: Let the assumption of Proposition 3.2(i) hold, and put, for 
every 1 < p < 2, 

k 
Cp(X, Y) : p--L-~ (1 + [ l n ( p -  1)[ + ln max{Tp(X), Tp(Y)}) 

• min{d(l~, X), d(l n,  X), d(l~, Y), d(l~, Y)}, 

where k is an absolute constant from Proposition 3.2. Then there is an absolute 
constant kl such that if Cp(X, Y)¢ < 1/2 for some p, then there is an onto 
isomorphism F: X --+ Y so that 

Ill(x) - f(z) - F(x - z)]] _< klCp(X,Y)¢R2/r 

for every x E ~ and 

Proof 
If 

IIFIIIIF-111 1 +4Cp(X,Y)c. 

Put  a = Cp(X, Y)c. 

a > k ( 1  + [ l n ( p -  1)[ + lnTp(X))min{d(/~, X), d(l~, Y)}¢, 
p -  

the statement is true by Proposition 3.2(i). 

If this inequality does not hold, then 

k 
a > (1 + I l n ( p -  1)1 +lnTp(Y))min{d(In, X),d(l~,Y)}¢. 

- p - 1  

Assume, as we may, that  z = 0, f(0) = 0 and r = (1 + ~)4. By Lemma 2.3(ii), 

f (Bx)  C By(1 + ~) C_ f(~). As f -1  is an ¢-quasi-isometry on By(1 + ~), 
Proposition 3.20) gives a linear operator G: Y --+ X such that  

(3.13) IIf-l(y) - GyI[ <~ a(1 +~)  for every y E By((1 +c ) )  

and 

(3.14) ] []Gy[_____J~ _ 1 < a for every y # 0. - 

Since a < 1/2, the inverse operator F = G -1 exists and 

]IF]tltF-111 <_ (1 + a)/(1 - a) <_ 1 + 4a. 

Let x e Bx. Put y = f(x). It follows from (3.13) and (3.14) that  

(3.15) Ill(x) - Fxl[ < IIFIIIIGy - f-l(y)l[ ~ a(1 + ¢)/(1 - a) < 2a(1 + e). 
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Now one can complete the proof by the same argument as in the proof of 

Proposition 3.2 using (3.15) instead of (3.12). | 

The following statement was obtained in IV2, Corollary 1.3.11], and we quote 

it without proof. (The proof is a modification of Kalton's [K], who established 

it, in fact, for X = Y = E = l~ as a tool in his proof that  the estimate 

k(logn + 1)sR2/r in John's Theorem 1.1 is sharp.) 

There is an absolute constant C with the following property: Let X and Y be 

n-dimensional real Banach spaces, and let f: B x  --+ Y be a bounded function with 

f(O) = 0 and 
::x :lxl+ :l l < K 

2 

for all x, y E [3x. Then for every n-dimensional real Banaeh space E there exists 

a linear operator F with 

Ill(x) - Fxll < CT2(E)2d(E, X)d(E*, Y)(ln n + 1)K 

for every x E [~x. 
Now similarly to Corollary 3.3, by ensuring the invertibility of the approxi- 

mating linear operator from Y to X, this statement and Lemmas 2.1 and 3.1 

imply 

PROPOSITION 3.4: There are absolute constants kl and k2 with the following 

property: Let X, Y and E be n-dimensional real Banach spaces (n >_ 2). Let a 

convex domain f~ be such that/~(z,  r) C f~ C B(z, R) C X,  and let f: f~ -~ Y be 

an e-quasi-isometry. Put 

C(X,  V; E) = T2(E) 2 min{d(E, X)d(E*, V), d(E, V)d(E*, X)} lnn.  

If  C ( X , Y ; E ) s  < kl, then there is an onto isomorphism F: X --+ Y so that 

Hf(x) - f ( z )  - F(x  - z)l [ < k2C(Z, Y; E)sR2/r  

for every x E f~ and 

] IWxl___~[ _ 1] < k2C(X ,Y ;E)c  
Ilxll 

for every x ~ 0. 

We can combine Proposition 3.4 with Corollary 3.3 as follows: 

Let E be an n-dimensional real Banach space and put 

n n 2 * ~(E) = sup{min{d(l I , X), d(l~, X), T2(E) d(E, X )d (E  , X)}: 

X is a real n-dimensional space}. 
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Define for every natural n 

tn = inf{t(E): E is a real n-dimensional space}. 

COROLLARY 3.5: There are absolute constants kl and k2 with the following prop- 

erty: Let X and Y be n-dimensional real Banach spaces (n >_ 2), and assume that 

ln(n)~ne <_ kl. Let a convex domain f~ be such that /~(z , r )  C_ f~ C_ B ( z , R )  C X ,  

and let f :  ~ ~ Y be an e-quasi-isometry. Then there is an onto isomorphism 

F: X --+ Y so that 

[If(x) - f ( z )  - F (x  - z)[[ _< k2 l n (n )~eR2/r  

for every x E f~ and 

[[FxH - 1 < k2 ln(n)~ne 
xll 

for every x ~ O. 

Proo~ Put a = min{d(/~, X) ,  d(1 n ,  X) ,  d(l~, V), d(l~,  Y)}. 

If a _< ~,~, then the statement follows from Corollary 3.3, because T2(E) <_ v ~ 

for every n-dimensional real Banach space E. 

Otherwise, choose for every s E (0, a - ~ )  an n-dimensional real Banach space 

E8 such that  t(Es) < tn + s < a. Then by the definition of ~(Es), 

and 

T2(Es)2d(Es, X )d (E; ,  X )  < ~(Es) < ~n 4- s 

T2 (Es )2d(Es , r )d (E* , r )  < en + s. 

Now the statement follows from Proposition 3.4. | 

Propositions 3.2 and 3.4 and some known results in the linear theory imply 

that  e-quasi-isometries in "nice" spaces can be approximated by linear isometries. 

(Corollary 3.6(iv) below is due to Kalton [K].) 

COROLLARY 3.6: There are absolute constants K1, K2, K3, [(4 and K5 and a 

function ~(p, s) with ~)(p, s) x~ 0 as s x,~ 0 so that, whenever a convex domain f~ 

is such that /~(z ,  r) C_ f~ C_ B(z,  R) C l~ (1 _< p _< e¢, n _> 2) and f: ~ ~ l~ is an 

e-quasi-isometry, one has: 

(i) If  p = 1 and ln(n)e _</(1, then there is a linear isometry W ofl~ such that  

Hf(x) - f ( z )  - W ( x  - z)[ I < K2 ln(n)eR2/r 

for every x E ~). 
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(ii) I f  1 < p <_ 4/3 and n(P-1)/Pg is sut~ciently small, then there is a linear 

isometry W of lp such that 

Ilf(x) - f ( z )  - W ( x  - z)H 5 ~7(P, n(p-1)/P¢)R2/r 

for every x E Q. 

(iii) I f p  E (4/3, 2) U (2, 4) and ln(n)nll/p-1/21¢ is sufficiently small, then there 

is a linear isometry W of l~ such that 

I l l ( x )  - f ( z )  - W ( x  - •)11 ___ ~(p, ln(n)nlUp-1/21c)R2/r 

for every x E ft. 

(iv) I f  p = 2, then there is a linear isometry W of  l~ such that 

Hf(x) - f ( z )  - W ( x  - z)l I < K3 ln(n)eR2/r 

for every x E ~. 

(v) // '4 < p < oc and nl/P¢ is sut~ciently small, then there is a linear isometry 

W of l~ such that 

Hf(x) - f ( z )  - W ( x  - z)N <_ ~(p, nUPe)R2/r 

for every x E ft. 

(vi) I f  the source space is L~(p )  and the target space is I~(F)  for some set F 

(the spaces are not necessarily finite-dimensional) and i f  c <_ K4, then there is a 

linear isometry W of  L~(# )  onto I~(F)  such that 

I l l (x )  - f ( z )  - W ( x  -  )1I < Ks R21r 

for every x E f L  

This improves and generalizes Theorem 1.1. 

Proof." Assume again that  z = 0, f (0)  = 0 and r = 1. 

(i) Since T2(X) <_ v ~ for every n-dimensional space X,  it follows from Propo- 

sition 3.20) (this time with the type p = 2) that  there are an absolute constant 

k and an isomorphism F: l~ ~ 1] such that  

for every x E fl and 

[If(x) - FxH ~ kln(n)~R 2 

IiIIFxll 1 < kln(n)~ 
11511 I 
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for every x ¢ 0. Thus by Godefroy, Kalton and Li [GKL, Theorem II.7], for 

example, if k ln(n)s _< 1/26, then there is a linear isometry W of l~ so that 

I1(1 - k ln(n)E)-l  F - WII <_ 26(1 - k ln(n)c) - l  k ln(n)c. 

Then W satisfies the conclusion of the statement. 

(ii) Denote by {e~}in=l the standard unit vector basis of lp. Then Proposi- 

tion 3.2(iv) holds with M = 1 and fl = n -(p-1)/p. Now the proof of the claim 

is completed in the same path as in (i) with use of a theorem of Alspach [A1] 

instead of the Godefroy-Kalton-Li theorem. 

(iii) follows from Proposition 3.4 (with E = (l~)* for p < 2 and E = l~ for 
_ T ,  n p > 2) and Alspach's theorem, since for every 2 < q < oc, 2(lq) <_ c~/rq and 

d(l~, (l~)*) _< Cn 1/2-1/q, where c and C are absolute constants (see [T, p. 15] 

and [T, Proposition 37.6 on p. 280]). 

(iv) This case is handled easily by applying Proposition 3.4 (with E = l~) and 

using then the polar decomposition. 
n n (v) follows from Proposition 3.2(ii), d( l~ , Ip)  = n 1/p for 2 < p < cc and 

Alspach's theorem as above. 

(vi) Recall the well-known fact that  any space L ~  (#) is linear isometric to a 

C(S)  space for some compact Hausdorff S. Now the claim follows from Proposi- 

tion 3.2(iii) and the next result due to Amir [Am] and Cambern [C]. 

Let K and S be compact Hausdorff spaces. I f  there is a linear operator T of 

C ( K )  onto C(S)  such that Ilfll <- IIT fll <- (1 + e)llfll for some 0 < c < 1, then 

there is a linear isometry W of C ( K )  onto C(S)  such that liT - wII < 3c. . 

Remark 3.7: (i) As has been shown by Matougkova [M] and Kalton [K], the 

estimate in Corollary 3.6(iv) is sharp. 

(ii) In the simple case when X = Y = R,  an c-quasi-isometry 

f:  ( z -  r , z  + r) r R 

is c-rigid in its domain. Hence, the linear isometry 

satisfies 

F x  = x sgn(~im(f(z + t) - f ( z  - t))) 

IIf(x) - f ( z )  - F (x  - z)ll ~llxll- 
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4. I n j e c t l v i t y  of  quas l - l somet r i e s  

Following tradition, we use here the notation of (m, M)-quasi-isometries instead 

of s-quasi-isometries, and we set # = M/m.  (Note that  if f is an (m, M)-quasi- 

isometry, then f/Mv/--M-m is ( v / M / m  - 1)-quasi-isometric, and # = (1 + s) 2 for an 

s-quasi-isometry.) Recall first some definitions (cf. [G2]). 

For a given connected open subset U of a Banach space X, we define #o(U) 

to be the infimum of all # for which there exists a noninjective (m, #m)-quasi- 

isometry from U into some Banach space Y. 

We say that  U C X is (r, R) -convex  if it is open and convex and B(z, r) C 
U C B(z,  R) for some z E X. We also define for 0 < T _< 1 

/t0(T) = inf{#o(U): U is (r, R)-convex, r / R  >_ T} 

and/ to  = #o(1). (Note that  #O(T) is unchanged if we only take r / R  = T in its 

definition, since if U contains B(z, r) then it contains B(z, r') with r '  < r.) 

The following concept was introduced by Martio and Sarvas [MS], but the 

formulation given here is taken from Gevirtz [G2]. We say that  an open subset 

U C X is an (a, b) -uniform d o m a i n  if any two points x, y of U may be joined 

by a curve C C U with the following properties: 

(1) C has finite length L <_ allx - YN. 

(2) If 7: [0, L] ---+ X is the arc length parameterization of C, then 

B(7(t), bmin{t ,L - t}) C U for all t e [0, L]. 

In this section we shall establish that  the function #0(T) behaves linearly near 

zero. We shall obtain also lower bounds for #o(tT), where U is an (a, b)-uniform 

domain. We shall use some arguments of Gevirtz [G2] and our Main Lemma. It 

is evident that  the function #0(T) is non-decreasing and that  for every bounded 

domain U, #o(U) <_ Po. Gevirtz [G1] showed that  #0 > 1.114...  (this is the best 

known estimate). 

Let e = (1, 0) e 12. Then the map f :  B(e, 1) --+ l~, given in polar coordinates 

by f(r ,  0) = f(r,  a0), is (1, a)-quasi-isometric, but is not injective when a > 2. 

It follows that  #0 _< 2, and we shall thus restrict ourselves, mainly, to (m, #m)- 

quasi-isometries with # _< 2. 

The next lemma is just a reformulation of Remark 2.4(i) to the language of 

(m, M)-quasi-isometries. 

LEMMA 4.1: Let X and Y be Banach spaces. Let x ,y  C X,  and let 

y: B((x + y) /2 ,211x-  ull) ) Y 
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be (m, M)-quasMsometric. Put It = M / m .  Then 

f(x_~_..y) f ( x ) +  - < 6 ( 1 - - ~ )  MIIx-yII" 

Using Lemma 4.1 and arguments of Gevirtz [G2] one can obtain 

PROPOSITION 4.2: Let X and Y be Banach spaces, and let 0 < m <_ M with 

i, = M / m  <_ 2. 

(i) Let x, y E X,  5 > O, and let f: B([x, y], 5) ~ Y be (m, M)-quasi-isometric. 
Then 

I l l ( x )  - f ( Y ) l l  >_ m ( 1  - 4 8 ( i t  - v/-f i)Nx - y l l / 5 ) l l x  - yl l .  

(ii) Let U C X be an (r, R)-convex domain, and let f: U --+ Y be (m, M)- 
quasi-isometric. If  

(4.1) 384(it-v/-fi)it < r /R,  

then f is injective. 

(iii) Let x ,y  E X,  5 > O, and let C be a curve of length L joining x to y. Let 

f: B(C, 5) ~ Y be (m, M)-quasi-isometric. Then 

I I f ( x )  - f ( y ) l l  ~ m ( l l x  - y l l  - 3 6 0 ( i t  - v / - f i ) L 2 / 5 ) .  

(iv) Let U C X be an (a, b)-uniform domain, and let f: U --+ Y be (m, M)- 
quasi-isometric. If  

(4.2) It + 6480(it -v/-fi)a2/b < 2, 

then f is injective. 

The proofs of these statements are exactly the same as the proofs by Gevirtz 

of Lemmas 10, 11 and Theorems 1, 2, 3 and 4 in [G2, pp. 313-317]; the only 

distinction is the use of Lemma 4.1 instead of Proposition 2 from [G2, p. 313]. 

We refer the reader to this article for details. 

COROLLARY 4.3: Denote the unique solution of the equation 

384(s-  x/s)s = r 

by sT. Then 

(i) Ito(T) > ST. 
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(ii) #o(T) >_ 1 + kT, where k = (v/~( + 1)/384s~ 5 = s 1 - 1 ,~ 0.0052. 

Proof: Since (t - v/t)t increases for t > 1, every #, such that  1 < # < s~, 

satisfies (4.1) for r > TR. Hence, (i) follows by the definition of p0(V) and 

Proposition 4.2(ii). 

Similarly, (v/t + 1)/t 15 decreases for t > 0, hence 

k v <  v ~ 7 + l  
_ 384s~. 5 r = s ~ - I  f o r 0 < v < l .  

Thus s¢ _> 1 + kT, so (ii) follows from (i). | 

Remark 4.4: Corollary 4.3(ii) answers a question of Gevirtz: In [G2, Corollary] 

he showed that  #0(T) _> 1 +k lT  k2 with kl ~ 1.7(10) -19 and k2 ~ 8.22, and posed 

the question (see [G2, Remark 3]) whether it is possible to take k2 = 1 with a 

suitable value of kl. 

That  k2 cannot be smaller than 1 follows from the next example of John [J5]: 

For a given ~ > 0, consider the mapping h of l~ into itself, given by the 

exponential function 

h(z) = e~Z/~ 

of a complex variable z. Direct computations show that  h is (e -e, e~)-quasi-iso - 

metric in the strip I Rez I < 1. On the other hand, 

1 
- = h ( 0 ) ,  

that  is, h is non-injective on U = co(B LJ ( ~ i } ) .  Therefore, 

( ~ )  e 2~ 2C -f- O(E). po ~ < ~ 0 ( 3 ) <  = 1 +  

Note also that  John [J5] obtained #0(T) _> 1 + C7 with some absolute constant 

C for the case when both spaces X and Y are Hilbertian. 

Remark 4.5: It follows from the definition of (a, b)-uniform domains that  a _> 1. 

Also, it follows from the definition that  for bounded domains b _< 1. Indeed, 

suppose that  points x, y lie in a bounded (a, b)-uniform domain U with b > 1. 

Let 7:[0, L ] - - -+X be an arc with 7(0) = x and 7(L) = y, and note that  

x ,y  E B(7(L/2), L/2). By the definition, U D B(7(L/2), bL/2), and this ball 

contains the bails with radius (b - 1)L/2 > (b - 1)llx - yll/2 centered at x and y. 

But this is impossible when IIx - yll -~ diam U. 
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Note that B ~  is a bounded (1, 1)-uniform domain, while in a Hilbert space 

the only (1, 1)-uniform domain is the whole space. 

Proposition 4.2(iv) with Remark 4.5 imply 

COROLLARY 4.6: Let U be an (a, b)-uniform domain. Denote the unique solution 
of the equation 

by s(a, b). Then 

(i) #o(U) >_ s(a,b). 
(ii) If  U is bounded, then 

s +6480(s -x /~)a2/b  = 2 

k b w h e r e k =  2 - s ( 1 , 1 )  s x / ~ , 1 ) + t  #o(U) >_ 1 + ~ ,  6480 sX/~ , l  ) 
- s(1,1) - 1 ~ 0.00031. 

Proof: (i) Since 1 < s(a,b) < 2 and t + 6480( t -  v/t)a2/b increases for all 

a, b > 0 and t _> 1, then given a, b > 0, every #, such that 1 < # < s(a, b), satisfies 

(4.2) with these a and b. The assertion follows by the definition of g0(U) and 

Proposition 4.2(iv). 

(ii) It follows from Remark 4.5 that there is no bounded (a, b)-uniform domain 

with a2/b < 1. Since s(a,b) <_ s(1,1) for a2/b _> 1 and ( 2 - t ) ( v ~ + l ) / v ~  

decreases for 0 < t < 2, then 

k b 2 - s(a, b) v f~a ,  b) + 1 b s(a, b) - 1 
a--~-< 6480 sv /~ ,  b) a ---~= 

for such a and b. Hence s(a, b) >_ 1 + kb/a 2, so (ii) follows from (i). | 

Remark 4.7: As U from Remark 4.4(i) is (2,c/(47r))-uniform (more precisely, 

any domain V = co(B U V), where V is a small neighborhood of the point ~ i ,  

is (2,e/(47r))-uniform), then the linear dependence on b/a 2 in the estimate of 

Corollary 4.6(ii) is sharp. 
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